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A comprehensive study of correlations in linear and nonlinear chemical 
reactions is presented using coupled chemical and diffusion master equations. 
As a consequence of including correlations in linear reactions the approach 
to the steady-state Poisson distribution from an initial non-Poissonian 
distribution is given by a power law rather than the exponential predicted 
by neglecting correlations. In nonlinear reactions we show that a steady- 
state Poisson distribution is achieved in small volumes, whereas in large 
volumes a non-Poissonian distribution is built up via the correlation. The 
spatial correlation function is calculated for two examples, one which 
exhibits an instability, the other which exhibits a second-order phase 
transition, and correlation length and correlation time are calculated and 
shown to become infinite as the critical point is approached. The critical 
exponents are found to be classical. 
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1. I N T R O D U C T I O N  

T h e  f l u c t u a t i o n  t h e o r y  o f  c h e m i c a l  r e a c t i o n s ,  and ,  in  p a r t i c u l a r ,  t h o s e  m a i n -  

t a i n e d  a w a y  f r o m  e q u i l i b r i u m ,  is c u r r e n t l y  o f  c o n s i d e r a b l e  in t e res t .  
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This contribution to the subject, based on the use of stochastic master 
equations to describe both the chemical nature and spatial location of a 
molecule, aims to give a broad treatment of correlation phenomena in this 
subject. The results are not all new, but we have aimed here at a treatment 
which is comprehensive in its treatment of correlations from our point of 
view. The work of Nitzan e t  al.  ~1> have treated similar material, though mainly 
from the point of view of Langevin equations linearized about a steady state, 
which is not necessarily equivalent to our treatment. A connected subject is 
the description of local Poissonian and global non-Poissonian fluctuations in 
nonequilibrium reactions, which has been treated by Nicolis, Prigogine, and 
co-workers, (2-7> Kuramoto,  (8~ Nitzan and Ross, (9~ and Gardiner et  al. <a~ 

Nicolis and co-workers simplified the problem by assuming a local factoriza- 
tion of the bivariate probability distribution describing the numbers of 
molecules, respectively, in a small cell and the remainder of the system. 
Kuramoto <a~ and Nitzan and Ross <9~ suggested that it is just the small 
correlations that were neglected that give rise to the difference in nature 
between global and local fluctuations. However, Nicolis e t  al. ~6,7~ derived, 
neglecting correlations, a nonlinear master equation which possesses solutions 
exhibiting Poissonian behavior in small volumes and non-Poissonian behavior 
globally. 

We have found that, in fact, linear systems exhibit many features which 
can shed light on this subject. We therefore start with an investigation of 
possibly the simplest linear diffusion-reaction system, that of simple isomeriza- 
tion. We show that there are actually many possible equilibrium states, 
depending on the type of statistical mechanical ensemble chosen to represent 
the system, but, with the choice of the grand canonical ensemble, one finds 
that the equilibrium distribution is a factorizable multi-Poisson distribution. 
We show, as has also been noted by Malek-Mansour and Nicolis, <7~ that this is 
exactly the result expected from equilibrium statistical mechanics, provided 
our description in space is sufficiently coarse-grained for us to be able to 
neglect the correlations that arise from the finite range of chemical forces. 
The system then behaves in this respect like an ideal mixture, though, of 
course, it is not, since a chemical reaction is proceeding, and chemical 
fluctuations exist. Furthermore, we show that in this particular case, factor- 
izable multi-Poisson time-dependent solutions also exist, a property which is 
possessed uniquely by this type of system. The question of the rate of relaxa- 
tion to a Poisson form of solution then arises, and we show how a study of 
correlation functions can shed some light on this. We find that provided the 
system is initially correlated over a short range, the Poissonian form is rather 
rapidly approached. But, more interestingly, an initial non-Poissonian, but 
factorizable, distribution function becomes nonfactorizable in the process of 
relaxing finally to the factorizable Poissonian form. The amount of correlation 
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introduced is small (17o) but not infinitesimal. This same relaxation to 
Poisson problem can also be treated by the nonlinear master equation of 
Nicolis et al., ~6"7~ which neglects correlations at all times. In spite of the 
smallness of the correlations which arise, we find that the result given by the 
nonlinear master equation is only qualitatively correct. The true power law 
decay of diffusion terms is replaced by an exponential. 

In Section 3 we give a brief discussion of generating function methods 
and the forms of master equations for nonlinear systems, and show how the 
multi-Poisson form in equilibrium arises from these master equations. 
Section 4 treats two examples of nonlinear systems, the first of which is 
exactly soluble, and the second of which is soluNe if we neglect higher than 
second-order terms in the power series expansion of the logarithm of the 
generating function. The behavior of all the correlation functions is similar 
in both cases, but our second model exhibits a phase transition, unlike the 
first, which merely becomes unstable above its critical point, and ceases to 
have a steady-state solution. The model with the phase transition involves a 
bimolecular reaction in the reactants of interest. Such a reaction is, in principle, 
nonlocal, and in letting the volume of the cells used to describe spatial 
location in the system go to zero the necessity for a nonlocal theory for an 
adequate description becomes apparent. 

In Section 5 we show how both models do indeed exhibit the Poissonian 
property when one considers smal~ volumes, and, as a result of corretatior~s, 
exhibit non-Poissonian behavior when one considers large volumes. An 
investigation of the correlation between a large volume and the remainder of 
the system shows that this correlation is proportional to the small volume, 
and is thus of the same order of magnitude as the variance of the fluctuations. 
This correlation is thus never negligible, even though the statistical correlation 
coefficient goes to zero in the limit that the system is infinite. 

Notation. We use the notation (A, B ) =  ( A B ) -  ( A ) ( B )  for the 
correlation between A and B. We write (x~)i = ( x ( x  - 1) ... (x - n + l))  
for the nth factorial moment. 

2. C O R R E L A T I O N S  A N D  F A C T O R I Z A T I O N  IN L I N E A R  
S Y S T E M S  

The stochastic theory of linear chemical diffusion reaction systems is 
mathematically completely soluble, and provides a useful starting point for 
our considerations. We shall investigate in this section only one linear system, 
but it will become clear that this is typical. A linear system is loosely defined 
as one in which the deterministic equations are linear (a more precise definition 
is given in terms of generating function equations in Section 3). For chemical 
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systems, this implies that  the reactions described are t ransformat ions  between 
isomeric terms of  the same chemical compound ,  or systems of  the fo rm 

A + X ~ - C + Y  

in which the concentrat ions of  A and C are considered to be held fixed. Since 
this can in practice occur only approximate ly ,  one should strictly consider 
such a react ion as a limit o f  a nonlinear  system. 

2.1.  D i f f u s i o n  R e a c t i o n  M a s t e r  E q u a t i o n  

Let us consider a typical linear system, consisting of  an isomerizat ion 
reaction 

k~, y (1) X . kl 

The  type of  si tuation which we consider will be in principle inhomo-  
geneous, and characterized by a mult ivariate  probabi l i ty  distribution 

P(x~,  x2 ..... & ..... xN, ya, Y2 ..... Yj ..... YN) -- P(x,  y) (2) 

where the indices i, j ,  etc., IabeI posit ions of  cells in space, and the quantit ies 
x,, y,,  etc. are the numbers  o f  molecules of  the componen t  in the correspond-  
ing cell. The  cells will be identical, and of  an unspecified but  small size. 

A master  equat ion which contains the possibility of  the reaction (1) as 
well as diffusion, viewed in our  case as a j u m p  of  a given molecule f rom one 
cell to an adjacent  cell with probabi l i ty  d, is 

0e(x ,  y) 
- . ~  {dij(x~ + 1)P(x~ + 1, xj - 1, :i, y) - d~jx~P(x, y) 

at 

+ d,j(y, + 1)P(x, y, + 1, yj - l, ~) - d,y~P(x,  y)} 

+ ~ {kx(y~ + l)P(x, - 1, y, + l, :~, Y) 
i 

+ k2(x, + 1)P(x, + I, y, - 1, 21, .~) - (k~y, + k2&)P(x ,  y)} (3) 

Here  

d~j = 0, i not  adjacent  t o j  
(4) 

= d, i adjacent  t o j  

We use the nota t ion  ~ to indicate that  all variables not  explicitly writ ten have - 
their usual values. 

We have, for  simplicity, assumed that  d is the same for both  X and Y, 
though  this assumpt ion  need not  be made.  

Similar  mas ter  equat ions have been writ ten by Ki tahara  Cn~ and 
Kuramoto.(8) 
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2.2. T i m e - D e p e n d e n t  M u l t i - P o i s s o n  Solut ions 

Equation (3) can be solved exactly, and a class of solutions of particular 
simplicity is given by the multi-Poisson form 

P(x, y, t) = ~ .  ~f e-<x~(t~>(xi(t))x~ e-<~'(t'>(Y~(t))~ly~! j (5) 

where the mean numbers (x~(t)) and (y~(t)), in the limit that the position 
may be replaced by a continuous variable r and higher than second derivatives 
may be neglected, satisfy the equations 

0(x(r, t ) )  = O V2(x(r, t ) )  + k l (y(r ,  t)) - k2(x(r, t)) 
~t 

(6) 
~(y(r, t ) )  _ D V2(y(r, t ) )  - k l (y(r ,  t ) )  + k2(x(r, t))  

~t 

In the case of a cubic cell system with cell length I we find that 

D = 12d (7) 

Thus D corresponds exactly to Fick's diffusion coefficient. We see that a 
multi-Poisson distribution of the form (5), once achieved, persists in form, 
and all variation is contained in the time rate of change of the mean values, 
which is given by the macroscopic equations (6). The assumption leading to 
Eqs. (6) is not really restrictive. It  essentially means that we have a description 
of fluctuations valid only for wavelengths somewhat longer than the cell 
length, which may be arbitrarily small, subject only to the requirement that 
the cell be large enough for a stochastic description to be valid. 

The Poissonian nature of this probability distribution and the factoriz- 
ability of  the form (5) are central features of the stochastic theory of chemical 
reactions. It  is therefore natural to investigate under what conditions these 
features are achieved. We should point out that the solution (5) is by no 
means unique. For  example, a solution of a multinomial form also exists, as 
found by Darvey and Staff. a2~ It  corresponds to a canonical distribution, 2 
whereas ours corresponds to a grand canonical distribution. In addition, of 
course, there are as many time-dependent solutions as there are initial 
distributions. The main question that arises is whether these other less 
desirable distributions are achievable, and if so, whether they represent a 
sensible definition of a system. To do this, we investigate correlations. 

2 The fact that one has both possibilities arises from the conservation of the total number 
of particles implicit in Eq. (3). By specifying that the distribution in total number be 
Poisson, we obtain our grand canonical solution. Since total number is conserved, the 
Poisson in total number will be preserved in time. There are, in fact, as many steady- 
state solutions as there are initial distributions in total number. 
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2.3.  T h e  T i m e  D e v e l o p m e n t  o f  S p a t i a l  C o r r e l a t i o n s  

We shall develop our arguments from the point of view of ensemble 
theory, since the ensemble average is essentially the only one available when 
we wish to deal with non-steady states. We must introduce the concept of the 
ensemble corresponding to a certain initial probability distribution and 
consider how in practice we would create such a thing. Our initial state would 
most reasonably correspond to an ensemble of systems which were made as 
nearly identical as possible in concentrations, etc. This corresponds to an 
initial distribution which has a narrow-peaked form. If we are considering 
homogeneous systems, we will be considering an initial ensemble of systems 
which are themselves as homogeneous as possible. Such systems would be set 
up in practice by mixing the appropriate chemicals and stirring the mixture 
at a rate typically faster than the chemical reactions. Because of the random 
nature of stirring, averaging over ensembles would generate zero correlations 
between concentrations at different spatial points. If  such a situation is not 
obtained, one would not consider that the mixtures had been thoroughly 
stirred--in other words, a mathematical formulation of the assumption of an 
ensemble of well-stirred systems would be the postulate of zero initial 
correlations, or, at least, very short-range correlations. 

The master equation (3) yields equations of motion for the correlation 
functions as follows. Taking a homogeneous isotropic ensemble of systems, 
for which the correlation functions can depend only on [r~ - rj[, we define 
functions f ,  g, and h by 

(x~, x j )  = ~ j ( x ~ )  + g([ri  - rjl) 

(x~, Ys) = f(lr ,  - rj]) (8) 
(y~, yj)  = 8,j(y~) + h(lr, - rjl) 

Notice particularly the terms linear in the mean values, which arise from the 
fact that the master equation we use gives rise to equations for fac tor ia l  
moments. Thus, again using the diffusion approximation, we derive the 
equations of motion 

Og(r, t) _ 2 D  V2g(r, t) - 2k2g(r, t)  + 2 k l f ( r ,  t )  
Ot 

Of(r, t)  _ 2 D  V2f(r,  t) - (k l  + k2) f (r ,  t)  + kzh(r, t) + k2g(r, t) (9) 
Ot 

Oh(r, t)  _ 2D  V2h(r, t)  - 2klh(r ,  t) + 2k2f (r ,  t)  
Ot 

The solutions to these equations are quite straightforward to derive. The 



Correlat ions in Stochast ic  Theories of Chemical  Reactions 313 

steady-state solution is 

g(r)  = ~kl  2, f ( r )  = ~ k l k 2 ,  h(r)  = r 2 (10) 

where ~ is an arbitrary parameter. The corresponding steady-state solutions 
of  (6) are 

(x(r,)) = vkl ,  (y ( rd )  = ~7k2 (11) 

where V is another arbitrary parameter. In the case that ~: = 0, we recover the 
Poissonian situation, where 

(x(rJ ,  x(rj)) = 8~j(x(rd) 

(x(r0, y(rj)) = 0 (12) 

(y(r,), y(r,)) = 8,j(y(r,)) 

However, other solutions exist, corresponding to the different possible 
ensembles that the stochastic equation can represent. Thus, a solution 
corresponding to a canonical ensemble would correspond to a multinomial 
distribution instead of a multi-Poisson, and be given by 

= - ~ / [ N ( k l  + k2)] 

where N is the number of cells in the system. 
Since we are dealing with a grand canonical ensemble, we must make the 

choice ~: = 0, and shall do so from this point onwards. 
Time-dependent solutions for any initial condition can easily be devel- 

oped. In the case that the solutions are initially homogeneous, uncorrelated, 
and Poissonian, (12) is satisfied as an initial condition, and thus f ,  g, and h are 
initially all zero, and clearly remain so. Thus an uncorrelated Poissonian form 
is preserved in time. 

The problem of relaxation to the Poisson is best dealt with by assuming 
a specific form for the initial correlation function; for example, consider the 
situation of an initially uncorrelated but non-Poissonian system, represented 
by 

g(r,  0) = ,zS(r), f ( r ,  0) = fiB(r), h(r, 0) = y3(r) (13) 

Then the time-dependent solutions are 

e x p ( - r 2 / 8 D t )  ~ k l k 2 e l  + (k l  - k 2 ) e 2 e - %  +k2 ~t -- eae-2%+~2 )t { f ( r  , t )  = 

\ h ( r ,  t)  \ k 2 % 1  + 2 k ~ 2 e  -%+k2~t + eae -2%+~=~t 

(14) 
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where 

~1 = (~ + 28 + ~)/(~1 + k~) 2 

s2 = [k~(fi + ~,) - k2(a + fi)l/(k~ + k2) 2 (15) 

~3 = [k~2~ + k~2y - 2k~k2~]/(k~ + k~) ~ 

Some noteworthy points of this solution are: 
(i) The terms el, e2, and e a correspond, respectively, to deviations from 

uncorrelated Poissonian of the quantities ((x~ + 20, (xj + yj)), ((x~ + Y0, 
( k l y j -  k2x j ) ) ,  and ((k~y~ - k2x~), ( k ~ y j -  k 2x j ) ) ,  which are essentially 
density fluctuations, correlation between density fluctuation and chemical 
imbalance, and fluctuations in chemical imbalance. We notice a characteristic 
diffusion form multiplying a chemical time dependence appropriate to the 
respective terms. 

(ii) The time taken for the deviation from Poissonian uncorrelated form 
given by Eq. (13) to become negligible compared to the Poissonian depends, 
of course, on the magnitude of the initial deviation. Assuming, however, that 
c~, 8, 7, (x~), and (y~) are all of comparable size, one can make a rough 
estimate as follows. We consider a small spherical volume of radius R much 
larger, however, than our basic cells. Then in this small volume V we find that 

ox~[z, o] = (x[V ,  o]) + ~v / l  ~ 

%2[V, O] = ( y [ V ,  0]) + ~,V/l 3 (16) 

(x[V,  o], y [ v ,  o]) = [3V/l ~ 

while after a time t >> R 2 / 4 D  these quantities satisfy approximately 

, ~ [ v ,  t] z (x[V,  t])  

V 2 
+ (87rDt)a/2 (k1%1 - 2kze~e -(k~+k~)t + e3e, -2(~+~2)~) 

~ [ v ,  t] ~ (y [v ,  t]) 
V 2 

+ (8rrDt)Z~2 ( k z%l  + 2k2e2e - (k~ + k~)t + eae-  2(~ + k~)~) 

V 2 
(x[V ,  t], y [ v ,  t]) z (8,~Dt)~j~ 

x [k lk2el  + ( k l  -- k2)e2e-(k~ +k~)t -- eae -2(kl+k~)t] (17) 

Thus the diffusion has reduced the overall deviation from Poissonian un- 
correlated behavior by a factor of the order of magnitude of R 3 / ( D t )  3/2. 
However, notice that in the case of an initial non-Poissonian, but also un- 
correlated situation, corresponding to fi = 0, we find that a correlation has 
appeared between X and Y, which, if the chemical rate constants are suffi- 
ciently large, can be quite substantial. 

Furthermore, it is clear that correlations at different spatial points also 
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arise even though the initial distribution was uncorrelated, and the correlation 
length is essentially the mean square distance traveled by a diffusing particle. 
If  D is large, this can be quite large. The maximum correlation occurring at a 
distance r is of the order of magnitude of 

( x ) e -  1/6 13 
- 0 8 )  

( 6~ )3 ;2  r 3 

where l is again the length of the cell. Thus, even between adjacent cells, 
where r = l, this is only of the order of 1 ~o of the initial deviation from 
Poissonian, which is indeed almost negligible. 

(iii) As a more general case, one can consider the case when the delta 
functions in Eq. (13) are replaced by a Gaussian of the form 

e x p ( -  r 2/2~) 

The solutions are similar to (10), except that the first factor in front of the 
matrix on the right-hand side is replaced by 

8tz 3 exp[-r2 / (8Dt  + 2/z2)] 
[Tr(8Dt + 2/z2)] 312 

In this case there will be no significant change in this factor until t ~ 1~2/4D. 
In an ensemble theory, an initially homogeneous ensemble with long-range 
correlations (i.e., large/~) could only be achieved by taking systems which are 
themselves systematically inhomogeneous, but for which the ensemble average 
is homogeneous. In practice, thorough stirring is expected to make the 
correlation length small. If  we wish to be able to ignore spatial correlations, 
we would require that they vanish much more rapidly than the speed of the 
chemical reaction, which occurs if kl + k2 << 4D/tz 2. 

(iv) We note that one often considers a reaction of the form X ~ A 
where A is held fixed. This may be mimicked in this formulation by consider" 
ing a case when (y~) becomes infinite while kl becomes zero, in such a way 
that k~(y~) is finite. In this case, we would derive equations for g, k l f  and 
k12h all of which would be expected to be finite, and specify initial conditions 
with k J  and k f h  zero. In this case we find that k~ f  and k12h remain zero, 
and g is given by 

81t%~ - ( 8 D t  + 2/z 2) g(r, t) = [zr(8Dt + 2tt2)] 3/2 exp - 2k2t (19) 

The fluctuations arising purely from diffusion no longer occur. 
(v) The above has treated a homogeneous system, for which the deviation 

from Poissonian would occur globally. In an alternative situation, we may 
consider a deviation from the Poissonian which occurs locally at the point ro. 
In this case the delta functions in Eqs. (13) would be replaced by 
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8(r - ro)8(r' - ro) and the solutions can simply be derived to be the same as 
in Eq. (14), but the factor outside the matrix is replaced by 

exp{- [ ( r  - r0) 2 + (r' - ro)2]/4Dt} 
(&rDt) 3 

and consequent changes occur in Eqs. (17). Notice that the relaxation of 
standard deviation eventually follows a t -a law in this case, rather than t -a~2 
as in Eq. (16). 

2.4. The Relaxation to Poisson Form as Described by a 
Nonlinear Master  Equation 

By using the postulate of complete factorization of the probability 
distribution into a product of distributions, one for each cell, a master 
equation for the probability distribution inside a cell can easily be derived, as 
has been done directly by Nicolis et al. (<7) We have shown in Section 2.3 that 
this can only be rigorously true if the initial state is both uncorrelated and 
Poissonian, in which case it remains so. However, we have also shown that if 
the initial state is non-Poissonian and factorized, the maximum possible 
correlation between adjacent cells is very small indeed. We shall therefore 
investigate this method also. 

It is instructive, however, to derive a reduced master equation first 
without a factorization assumption. We define 

P(xr, Yr) = ~ P(x, y) (20) 
(x~vO 

and can straightforwardly derive the equation 

(O/Ot)P(xr,  Yr, t)  

= ~ {d~,(x~ + 1)/3(Xr + 1, Yr, t)  -- di~xrlfi(Xr, Yr, t )  

-b dr,(Yr -t- 1)/6(Xr, Yr -t- 1, t )  -- 4rYrP(Xr,  y~, t )  

+ 4~&(xr - 1, y~, t )P(x~ - 1, y~, t)  - d ~ & ( x ,  y~, t )P(x~,  y~, t)  

+ 4rY~(X.  YT -- 1, t )P(x~,  y~ -- 1, t)  -- <~2~(Xr, yr,  t )P(xT,  y~, t)} 
+ k l ( y r  + 1)/5(x~ - 1, y~ + 1, t)  + k2(x~ + 1)ff(x~ + 1, yr - 1, t) 

- (kly~ + k2xOP(x~, >, t) (21) 

In this equation the functions &(x~, Y d )  and y~(xr, yr, t) are the mean 
values of x~ and y~ evaluated at definite values of x~ and y~: precisely,. 

&(xr ,  y~, t )P(x~,  y~, t )  = ~ & P ( x ,  y, t )  (22) 
{xi,Yj} 

.~r 

with a similar definition for y~(x~, y~, t). 
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In the case of an isotropic system with a cubic cell system, the only terms 
~(x~, y~, t) and f~(x~, Yr, t)  occurring in Eq. (21) will be those for which i and 
r represent adjacent cells, which will therefore have values independent of i, 
which we designate by s y~, t) and Y(Xr, y~, t). Under these conditions, 
we find that 

8P(x,  y,  t)/Ot = ~{(x + 1)/~(x + 1, y,  t)  - x f f (x ,  y, t)  + ( y  + 1)P(x, y + 1, t) 

- y P ( x ,  y,  t)  + 2 ( x  - l , y ,  t ) P ( x  - 1,y, t) - ~ ( x , y ,  t ) P ( x , y ,  t)  

+ y (x ,  y - 1, t )P(x ,  y - 1, t)  - y ( x ,  y, t )P(x ,  y,  t)} 

+ ~:~(y + 1)P(x  - 1, y + 1, t)  + ~ ( x  + 1)P(x  + 1, y - 1, t)  

- ( k x y  + k2x)P(x ,  y,  t)  (23) 

where 

= 6d = 6D/I  2 (24) 

This equation is almost that of Nicolis et aL, <6'v~ but a t  this stage no 
assumption of factorizable probability distributions has been made. This 
manifests itself in the dependence of the mean values Y and 37 on the variables 
x and y. On assuming factorizability, this dependence disappears and we 
recover the equation of Nicolis et al. for this system. With the same assump- 
tion, the equation is also valid in inhomogeneous systems provided we 
interpret the 2 and y to be 

~ff(x, y, t) = 1 

~ ( x ,  y,  t) = 1 

ds y, t) 
ce l l  

n e i g h b o r s  

dy,(~, y, t) 
ce l l  

(25) 

we find 

ds ,x /d t  = -(2-@ + 2k2)sxx + 2klsxy 

ds~Jd t  = - ( 2 ~  + k~ + k2)s,~ - k l s ~  - k2sx,: (28) 

ds~y/dt = - ( 2 ~  + 2kl)sy~ + 2 k 2 s ~  

These are very similar to Eqs. (9), and predict similar solutions, in which, 
however, the characteristic diffusion factor is replaced by exp(-12Dt/12). 

neighbors 

]If we consider that factorizability is sufficiently true, we can set 

s y, t) = ( x ( t ) ) ,  2 (x ,  y,  t)  = ( y ( t ) )  (26) 

and derive equations for the standard deviation and correlation functions. 
Defining 

sxx = %2 _ ( x ) ,  s~u = ~y2 _ ( y ) ,  sx~ = ( x ,  y )  (27) 
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Since this master equation describes one given cell in the system, Eqs. (28) 
will describe the time development of deviations from the Poissonian in one 
part of the system, for which we have derived exact solutions in Section 2.4(v). 
Thus, the general features of the behavior of the second moments are correctly 
given by ignoring correlations between cells, but the actual manner of 
relaxation to a Poisson is only qualitatively given. 

2.5.  T w o - T i m e  C o r r e l a t i o n  F u n c t i o n s  in t h e  S t e a d y  S t a t e  

We can define the two-time correlation functions as 

(&(t) ,  x j ( t ' ) )  = ~" x ix /P(x ,  y, t; x', y', t ' )  (29) 
{x,x'} 
{y,y'} 

and similarly for the averages (x,( t) ,  y j ( t ' ) )  and (yi(t),  yj( t ' ) ) .  The quantity 
P(x, y, t; x', y', t ') is the joint probability, i.e., the probability that the 
system is in state x, y at time t and in state x', y' at time t', and is clearly 
given by 

P(x ,  y, t; x', y', t') = P(x ,  y, t )P (x ,  y, t lx' ,  y', t') (30) 

where P(x, y, t) is the probability the system is in state x, y at time t, and 
P(x, y, t ]x', y', t ') is the conditional probability that the system is in state 
x', y' at time t' given that it was in state x, y at time t. The conditional 
probability clearly satisfies the master equation (3) in the primed variables, 
so that one easily derives equations for the steady-state correlation functions. 
In the case that we deal with the steady state, which is homogeneous and 
isotropic, the correlation functions will depend only on Ir~ - r j [  and t '  - t. 
We define precisely 

G(lri - r j l ,  t' - t) = (&(t), xj(t'))ss 
F+([r~ - rj[, t '  - t) = (x,( t) ,  yj(t '))ss 

(31) 
F-(lr~ - rjl, t '  - t) = (y~(t), x j ( t ' ) )~  

H(Ir~ - rj], t '  - t) = (yi( t ) ,  y j ( t ' ) )~  

which obey the equations 

OG(r, t)/~t = D V2G(r, t) - k2G(r, t) + klF+(r ,  t) 

~F+(r, t)/~t = D V2F+(r, t) - k lF+(r,  t) + k2G(r, t) 
(32) 

~ f  -(r,  Q/at = D V 2 f  -(r, t) - k 2 f - ( r ,  t) + kiH(r ,  t) 

aH(r, t)/Ot = D V2H(r, t) - k i l l ( r ,  t) + k2F-(r ,  t) 
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We find the solutions 

G(r, t) \ 

F+( r, t) I 

g - ( r ,  t ) ]  

H(r, t) ] 

<x + y}  e x p ( - r 2 / 4 D t )  
(kl + k2) 2 (47rDt) 3/2 

(kl 2 + kzk2e-% +~)t \  

klk2[1 - e -  % + k:)t]/ 

klk2[1 - e - %  +k2)t]] 

k22 + kLk2e-(kl +~2 ) t /  

(33) 

which satisfy the appropriate boundary conditions at t = 0. 
By a little rearranging, we find the following: 

, \ <x + y}  exp ( - r2 /4D] t  - t'[) 
<x~(t) + y~(t), xi(t '  ) + ys(t ),,~ = (4~rDl t _ t,i)3/2 

(x,(t)  + y~(t), k2xj(t') - k ly j ( t ' )}  = 0 for all t and t '  
<k2x,(t) - kly~(t), k2xj(t') - klyy(t ')} (34) 

klk2<x + y}  [ - r 2  (kl + k2)lt - t'l ] ] 
= (4~rDl t - t,1)3/2 exP[4D~-7  t '  I 

where r = Ir~ - r j I .  Thus the two-time correlations are nonzero only between 
fluctuations of the same kind (i.e., the first line corresponds to density 
fluctuations, the last to fluctuations in chemical imbalance, the middle line 
is the cross-correlation between the two), and the nonzero correlations have 
decay rates appropriate to their nature. 

3. THE S T O C H A S T I C  T H E O R Y  OF GENERAL C H E M I C A L  
S Y S T E M S :  G E N E R A T I N G  F U N C T I O N  M E T H O D S  A N D  
N O N L I N E A R  S Y S T E M S  

In the remainder of the paper we shall deal with systems in which all but 
one chemical species are considered to be held at fixed concentrations, 
mainly to simplify the equations. 

Our most general master equation will then consist of a diffusion term, 
which is exactly the same as that in Eq. (3), and a chemical term 

8P(x, 
t) I = ~ {t_q(x, + q)P(x, + q, ~, t) - t_q(x~)P(x, t) 

~ l  Chem ~,q 

+ t+q(x~ - q)P(x~ - q, ~, t) - t+q(xJP(x, t)} (35) 

Here q will correspond to a reaction step involving q molecules of X simul- 
taneously. 

We define a generating function 

N 

c(s, t) = H t) (36) 
{x} i = 1 
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N is, as before, the number of cells in our system. The equation of motion for 
the generating function can easily be derived. In the case that the transition 
probabilities per unit time have the form 

(x~)! (37) 
t ~q(xO = aq~'~ (x~ -Z -l) ! 

the generating function equation becomes 

0G(s, t) c~om Ot = ~ (1 - s~q)s ~-q(a~,z - s~qa+z) OZG(s' t) (38) 
i,q,t ~S~ z 

From this equation we derive equations for the means 

OG {s} ={1} 
( x , )  = ~ (39) 

and second moments 

( x i x j )  - 3 u ( x i )  = ~2G (40) 
~Sr {s} = (1) 

These equations of motion are, when the diffusion term is also included, 

e(xi__.__~) = D V~ , ( x , )  - ~ q(aLz - a~ , ) ( x r ( x r  - 1)...(x~ - l + 1)) (41) 
Ot q,~ 

and 

= D(V~, + Vg){(xixj) - 3u(x,) } 

- ~ q ( a ~ . ~  - aq+,l){(x~xj(xj - 1)...(xj - l + 1)) 
q,l  

+ ( x j x i ( x , -  1)" - (x i -  l +  1))} 

+ 3~j~{q[(q - l ) ( a ~ , z -  a+~) + 2 q a + z ] ( x ~ ( x ~ -  1)...(x~ - l +  1))} (42) 
q, l  

We have again made a continuum approximation for the diffusion terms. 
For systems involving reactions of the form 

nX + A ~ m X  + B (m > n) (43) 

and no other reactions, if we have the requirement 

t ~ - " ( x O  = kzAx~(x~ - 1)...(x~ - n + 1) 
(44) 

t '2-~(x~) = k2Bx~(x~ - 1)...(x~ - m + 1) 

we can simply demonstrate that the exact steady-state solution is Poissonian, 
and Eq. (42) also gives a solution which has no correlations. However, in 
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general, if one has a different form for the transition probabilities, it appears 
that correlations will exist. Equations (42) cannot be solved, but by making 
various plausible approximations, we find that the coefficient of ~u does not 
vanish, and this term gives an inhomogeneity in the differential equation 
which causes a correlation to arise. How this happens can be shown in specific 
examples. 

The terms involving 3u in the correlation functions arise from powers of 
the s~ higher than the first, i.e., from nonlinear terms in the s~. For, if no correla- 
tions do arise, we must have no nonlinear terms in the s~, and this arises only if 

aq-.z=O unless l = q =  1 (45) 
+ = 0  unless l = 0 ,  q =  1 aq,l 

Thus the most natural definition of a nonlinear system comes from the 
generating function equation: A system is nonlinear if its generating function 
equation is nonlinear in the generating function variables {s~}. A sufficient 
condition for this definition to be satisfied is for the deterministic equations 
to be nonlinear, but this is not a necessary condition, a counterexample being 
the reaction to be studied in Section 4.1. 

4. T W O  E X A M P L E S  OF N O N L I N E A R  S Y S T E M S  

4.1. An Exact ly Soluble Model  

We consider the reaction system 

B + X ~ C ,  A + X ~ 2 X  (46) k'-V- 

where A, B, and C have fixed concentrations. We work now in densities 
defined by 

p(r~, t) = x(r~, t ) / l  3 - x~(t)/l a (47) 

and by the methods of  Section 3 derive equations for the mean and the 
correlation function. We define 

g(r, r', t) = <p(r, t), p(r', t ) )  - ~(r - r ')(p(r, t ))  (48) 

so that 

~(p(r, t ) ) /~ t  = D V2(p(r, t ) )  -- (/(1 - Kz)(p(r, t ) )  + K~[3 (49) 

and 

@/Ot = D(Vr 2 + V~,)g + 2(K2 - K1)g + 2K~@(r, t))8(r - r') (50) 
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where 
K 2  = k 2 A / l  a = k2[A] 
K1 = k ~ B / U  ~ kl[B] (51) 

fi = k 3 C / K 2 l  3 - k 3 [ C ] / k 2 [ A ]  

where [ ] indicates concentration of the chemical species. The steady-state 
solution for the correlation function is 

K2<P) '  exp[ - [ r - - ~ r ,  {K~--D ] ]  

(52) 
where (p> is the steady-state solution for the density, 

( p ) s s  = ~ g 2 / ( K ~  - K s )  (53) 

Thus this exactly soluble model does give rise to a nonzero steady-state 
correlation. The correlation, however, goes to zero as Ks--+ 0, which is 
expected, since in this case the second reaction no longer contributes, and the 
first reaction is one which can come to equilibrium. 

The correlation length Ic is given by 

lc = [ D / ( K x  - K2)] 1/2 = a-1 (54) 

and is the same order of magnitude as the mean distance between reactive 
collisions as long as Kx is not close to/s [Notice that as Ks ~ 0, although 
the reaction becomes linear, the correlation length does not go to zero. 
However, Eq. (52) shows that the correlations themselves go to zero.] The 
length Ic is a rather long distance in general. Substituting the values (51), we 
find 

lo = [ D / ( k ~ [ A ]  - k2[B])] 1/2 (55) 

The correlation length is thus inversely proportional to the concentrations of 
A and B (if the ratio of these is kept fixed), and can be made as large as 
desired by diluting the systems. 

Equation (50) yields a relatively simple solution in the case in which the 
system is initially homogeneous and the mean concentration has reached its 
steady-state value; we find that 

(p(r, t), p(r', t)> = 3(r -- r')(p> 

Ks<p> / 

+ 4rrD-~-[r ~ r'l [[exp(--~lr -- r'])] 

• { 1 - - 1  erfc[a(2Dt)l/2 ( 8 D t ) l / 2 j j  Ir "- r ' l ] ~  

1 
- ~ exp(~]r - r ' [ )erfc[~(2Dt)  ~ + (SDt)----'~J] (56) 
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This behavior would represent the return to correlated behavior after, for 
example, vigorously stirring the steady state. The relaxation time (found by 
use of mathematical methods similar to those used for the two-time correla- 
tion function later in this section) is 

r~ = l(K2 - /(1) -1 (57) 

The two-time correlation function can be calculated by methods similar to 
those used in Section 2 for the linear system. The equation of motion is found 
to be, for the steady-state two-time correlation function, 

g(lr~ - rj[, t '  - t) =- (x(r~, t), x(rs, t')} (58) 

ag(r, r)/ar = D V2g(r, t) - (K1 - K2)g (59) 

The boundary condition is 

g(r, 0) = (p(0), p(r)}~ (60) 

and the solution satisfying this is 

g(r, r) = (p} exp ( - r2 /4Dr  -- ~2Dr) 
(4rrDr) a12 

K2(P){[exp( -~r )]er fc[  a(Dr)z~2 2(Fr)l,~] 
+ sgg-bTr 

[ r 1} (61) + [exp(ar)] erfc ~(Dr) ~/2 + 2(Dr)~/------- ~ 

For small r we find 

r 2 

g(r, r ) - ->(p}(exp~Dr){(&rDr)-a/2  

while for large r 

4K2(Dr)al2\ K2<p}e-~r (62) 
raV'~r ) + 4rrDr 

f e x p ( - r 2 / 4 D r )  K~ 
g(r, r ) ~  ~ O ~ r ) a / 2  + 4,rar(7~%)l,2}(p} exp(=a2Dr) (63) 

If the long-time behavior is considered to give the measure of the correlation 
time, then it is clear that this time r is given by 

rc = lo2/D = (K2 - K1) -1 (64) 

a result similar to that found by Graham ~ in his work on the Benard 
instability. 

In the case where we are looking at the number of molecules in a volume 
much larger than the correlation length, we may integrate over the volume in 
Eq. (59), and thus eliminate the Laplacian, giving the much simpler solution 

(x[V, r], x[V, 01) = cr2[g, 0]e-~l~c (65) 
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4.2 .  An  A p p r o x i m a t e  S o l u t i o n  f o r  a S y s t e m  E x h i b i t i n g  a 
S e c o n d - O r d e r  Phase T r a n s i t i o n  

As a further example of a nonlinear system we consider the reaction 
scheme 

B + X  k--z-'~ C, A + X  ~ "  2X (66) 
k'~- ~k4 

where we have retained the reverse reaction in the autocatalytic reaction. 
Schl6gl ~14~ has given a deterministic analysis of this system and has shown 
that in the limit f i-+ 0 the system undergoes behavior very similar to an 
equilibrium second-order phase transition, with the density (p) behaving as 
an order parameter. The transition point is/(1 = /s at which the slope of 
(p) versus K2/K1 changes discontinuously and the system exhibits critical 
slowing down. A stochastic analysis of this system for the non-space- 
dependent case has been given by McNeil and Walls (1~ and Nitzan et al31~ 
Using the techniques expounded in the previous sections, we may examine the 
behavior of the spatial correlations in this system. 

The equations for the mean number and correlation function may be 
derived from the generating function in a similar fashion to the derivation in 
Section 4.1. The inclusion of the reverse autocatalytic reaction introduces 
higher order moments to these equations and some approximation is necessary 
to give closed equations. 

We shall use an approximation which bears a resemblance to the 
Gaussian approximation, namely 

<x~xjx~>i = [<x~xj>i - ( x ~ ) ( x ,  F l ( xk )  + [(xjx~>r - (x~F(x~)](x~> 

+ [(&xk)r - (x~)(x~)]<xj) + (x~F(xi)(x~) (67) 

where ( )r indicates a factorial moment. This approximation arises from a 
quadratic approximation to the logarithm of the generating function of the 
form (37), in the same way as the Gaussian approximation arises from a 
quadratic approximation to the cumulant generating function. In the limit of 
large numbers, the approximations become equivalent to each other. The 
advantage of approximation (67) is that, unlike the Gaussian approximation, 
it is exactly true for the Poisson distributions found in thermodynamic 
equilibrium, and further, no extraneous terms which vanish in the limit of 
large volumes appear when it is employed, since the equations of motion 
already are naturally formulated in terms of factorial moments. Using.this 
approximation, we derive steady-state equations satisfied by the density of 
particles and for the correlation function g. These are 

( &  - K 1 ) ( p )  + 5 K ~  - 8[g(0) + (~)~J = 0 (68) 
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where 8 = k~l 3 and because of the spatial homogeneity of the steady state, 

D V2g(r) - ( K t  - K2)g(r)  + K2(p)8(r) 

- a{[g(0) + <p>2] a(r) + 2 ( p ) g ( r ) }  = 0 (69) 

The quantity g(0) occurs explicitly in both these equations, which also imply 
that, in the approximation that r is a continuous variable, 

1 e - a t  
= - -  [K~(p) - / 3 K d  (70) 

g(r )  4rrD r 

which clearly implies that g(0) is infinite. I f  we solve the exact difference 
equation corresponding to (69), we find that  

g(O) ,.. ( e / D I ) [ K I ( p )  - [3K2] (71) 

where e is some constant of  order of  magnitude of one. We can now solve the 
coupled equations, and find that 

We would wish to take the limit l -+  0, but doing this, we find 

( p )  = ~K2/K1 

g(r)  = 0 (r r 0) (73) 

g(0) finite 

This result, while undoubtedly a rigorous derivation from the theory [subject 
only to the approximation (67)], need not necessarily have any relevance to 
the process under study. 

The quantity 8 /D  is of  dimensions length, and its order of  magnitude can 
be assessed on the assumption of either a gaseous or a liquid system. In the 
case of a gas, if A and X are molecules of the same radius a forming the gas, 
simple collision theory gives a 

8 -= 2 a2q (74) 

where q is the probability of 2X -+ A + X given that a collision has occurred. 
Using the kinetic theory value of the diffusion coefficient, 

D ~ -}(2/~r)a12(rnkT)l12/a2rn(p) (75) 

so that 

8/ D = (~raa(p) ) (9V'~raq) / (4~/2)  (76) 

The factor % a a ( p )  is the fraction of space occupied by the molecules, which 

a Derivations and references for this and the following formulas can be found in Ref. 16. 
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is negligible in a gas. The factor q is at most of the order of one, so that ~/D 

is an infinitesimal fraction of a, the radius of  the molecule. 
We can also carry out the calculation under the assumption that the 

reacting molecules are of large size and move as Brownian particles in an 
inert gas, using the formula 

D = kT/67r~a (77) 

where ~7 is the gas viscosity, and using the kinetic theory value for the viscosity, 
we can derive 

~/ D = (8/'V/~r)(a/ag)3(2mg/m)l/2qag (78) 

where mg and a s are, respectively, the mass and radius of the inert gas 
molecules. The assumptions under which (77) are valid are that the mass of 
the reacting molecule and its diameter are much larger than those of the gas 
molecules. Assuming that the reacting and gas molecules have similar 
densities, we find 

~/ D ~ (a/ag)~/~qa (79) 

A similar result can be derived for a liquid solution of the reactant, but in this 
case the cage effect will make it possible for the effective q to be much larger 
in diffusion-controlled reactions. 

The limit of l--+ a must be regarded as unphysical, however, since the 
stochastic equations always assume that an infinite number of particles can 
be put into the volume 13, which is impossible, and that the mechanism 
A + X ~ 2X takes place inside one cell, which also cannot happen. In order 
to treat cases where 3 /D  ~ a, a nonlocal theory of the bimolecular theory 
would be needed. 

We thus leave these cases for a later paper, and consider here only the 
case where ~/Dl  << 1, in which case Eq. (72) becomes the same as that which 
would arise by neglecting g(0), so that we may now set 

?2> = <p>2 +/-3(p> (80) 

which corresponds to a Poissonian distribution for local fluctuations. 
The steady-state solution for g is 

g(r) - K I ( p )  - ilK2 e_ , r  (81) 
4rr D r  

where a = [(/s - K2) 2 + 4fl~K2]I/~/DI/L In the limit where we neglect the 
back reaction, i.e., setfi = 0, the transition becomes sharp and the expressions 
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for the steady-state density and correlation function reduce to 

and 

( o ) = O  for K2~</(1 
(82) 

(p)  = (K2 - K~)/8 for /(2 > /(1 

(p ( r ) ,  P ( r ' ) ) s s  = 8(r --  r ' ) ( p )  + 

where lc is the correlation length, 

K , @ >  exp lr - r'l (83) 
4~rDlr - r'l lc 

lo = a -~  = ( D / [ K ~  - A_'21) ~ 2̀ (84) 

which is symmetric about the transition point/(1 = /(2 and becomes infinite 
at the transition point. This behavior is closely analogous to the behavior of 
the correlation length in a Second-order phase transition. We note that the 
critical exponent has the classical value of �89 

Similar behavior has been noted by Nitzan e t  a l . ,  (1) who calculate the 
correlation length in chemical reactions in a linear approximation. The above 
result is also in agreement with those of Zaitsev and Schliomis, (17) Graham, (la) 
and Boon, (la) who treat spatial correlations in the Benard instability in 
liquids. 

In a similar manner to the example of Section 4.1, we may calculate the 
two-time correlation function for this system. In the limit fl = 0 this correla- 
tion function has the same form as given in Eqs. (51)-(53) with the substitution 
K2 --> K I  and with a = Ii -~. The correlation time rc is given by 

rc = I~2/D = IK2 - K l 1 - 1  (85) 

exhibiting a dynamical critical exponent of one. 
We can also investigate the magnitude of the fluctuations as the critical 

point is approached. Let A V be some subvolume of the system, and consider 
the number variable within this volume 

t "  
x[AV] = Jar d3r p(r) (86) 

We can calculate the variance of the steady-state distribution by direct 
integration of the correlation function (83), to give 

(87) 

(we assume here that AV is a spherical volume of radius R). As we approach 
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the critical point, Ic --> 0% and we obtain 

2K1R ] (88) e2[AVI---><x[AV]) 1 + 5D J 

Thus the magnitude of the fluctuation is finite, but can become arbitrarily 
large as R increases. By keeping Ic finite and letting R become infinite, we 
obtain 

a2[ A V] -+ (x[ A V]) KJcU/ D (89) 

Thus, for an infinite system, the variance diverges like lc =. This behavior will 
be closely followed by a finite system as long as lc << R but the value at the 
critical point will be given by (88), and will not be infinite. 

5. F L U C T U A T I O N S  IN F INITE V O L U M E S  

5.1. The Transi t ion  f r o m  Local Poissonian Form to Global  
Non-Poissonian  Form 

It is of interest to investigate the nature of the probability distribution 
within an arbitrary volume. The result (87) may be used to show for a 
spherical volume A V of radius R, that if R << lc, 

,~2[zXV] ~ (x[AV])[1 + (2K, R2/5D)] (90) 

where i = 1 for the reaction of Section 4.1 and i = 2 for the phase transition 
reaction of Section 4.2; it is understood that if i = 1, all subsequent formulas 
hold only for / (1  > /(2. 

In the limit R -+ 0 the fluctuations become Poissonian in agreement with 
the postulate of the local equilibrium in small volumes. 

For large R, the variance becomes 

( K~ 3KJo 
e2[kV] z (x [AV])_ tK 1 _ K2I - 21/(1 - K2[R] (91) 

As R --+ oo this approaches the variance from a non-space-dependent master 
equation for the appropriate reaction. However, in the case of the reaction of 
Section 4.2, it is necessary to make the approximation (87) for the factorial 
moments in the non-space-dependent master equation and to take the limit 
that the size of the system is infinite. Neither of these is necessary for the 
reaction of Section 4.1. 

It is of interest to compare these results with those obtained by neglecting 
correlations, i.e., assuming a factorizable probability distribution. In the case 
of the reaction of Section 4.1 the calculation is straightforward, and leads to 

as[&V} = (x[AV]){1 + [K2/(Kx -- K2 + N)]} (92) 
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where ~ oc D/A 2 oc D/R 2 and h is some typical length of the volume A V. In 
the limits of very small and very large R this result agrees with the exact result, 
but comparison with Eq. (92) shows that the large-R limit here is approached 
quadratically in R -1 rather than linearly. ~ This is a consequence of the 
factorization, which would imply vanishing correlations. 

5.2. Corre la t ions  B e t w e e n  a Smal l  and Large V o l u m e  

The factorization ansatz as originally applied by Nicolis was concerned 
with the fluctuations within a small volume in comparison with the fluctua- 
tions in a large surrounding volume. Assuming a factorization of the joint 
probability distribution essentially neglects correlations between the small 
volume A V and the large volume V - A V. In order to examine the validity of 
this assumption, we shall calculate the correlation function between the two 
volumes for the reaction of Section 4.1. We define the normalized correlation 
coefficient 

C[AV, V -  AV] = <x[AV], x [ V -  AVI}/G[AV],~[V - AV] (93) 

where 

and 

<x[AV], x[V - AV]} : ~v d3r fv-zv d3r' (p(r), ?(r')} (94) 

<0(r),  0(r')> = <o(r )0(r ' ) )  - @ ( r ) ) < p ( r ' ) )  (95)  

The integral in Eq. (95) may be expanded as 

jlv d3r fv_~v dar' @(r), p(r')) 

= ~v d3r fv dSr' <p(r), p(r')} - fzxv d3r ~v  d3r' (p(r), p(r')} (96) 

The first integral is most easily evaluated by integrating Eq. (52) for the 
correlation function in the steady state. By assuming that the volume V has 
dimensions much larger than the correlation length lc we can ignore the 
surface contributions of the V 2 term. The integration over r merely yields AV. 
The second integral is •2[A V] and is given by Eq. (87), which we write in the 
form 

c~2[AV] = <x[AV]}[1 + f(AV)] (97) 

4 In a recent work Malek-Mansour and Nicolis (v~ advance arguments that ~ is pro- 
portional to D/R. 
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The normalized correlation coefficient for A V << V is then 

(K2/K1)ll2 - f ( A V )  (_~_) 1/2 
C[AV,  V - AV] = - ~  ~ K2)1/~ (98) 

Thus the normalized correlation between the two volumes has a finite value 
which only tends to zero in the limit A V/V--t"- O. Similar results can be derived 
for the reaction of Section 4.2. 

6. S U M M A R Y  A N D  C O N C L U S I O N S  

Our main thrust in this work has been the comparative formulation of 
formulas for correlations in different chemical situations. Our whole work 
depends on the use of stochastic master equations, which, we believe, have a 
better conceptual and intuitive basis than the fluctuating force formalism of 
Langevin equations. 

It is important to note that our results show that the correlation lengths 
can in principle be arbitrarily large in these diffusion-reaction systems. The 
scale of correlation lengths is not microscopic, but is given by the mean 
distance between reactive collisions, or, more precisely, Since our theory is not 
explicitly based on the collision theory of chemical reactions, by the mean 
distance traveled by a molecule between individual reactive steps. The 
measurement of this distance should not present insuperable technical 
difficulties, e.g., light scattering (19) and fluorescence correlation spectros- 
copy (2~ should be sufficiently powerful techniques. Light scattering itself 
does measure quite directly the two-time correlation function at one spatial 
point, and, as can be seen from the results of the preceding sections, the 
chemical reaction can have a profound effect on this correlation function. 
Indeed, careful calculations by Berne and Gininger ~21) have already shown 
how the light scattering spectrum would be altered. 

We hope the debate on microscopic and macroscopic fluctuation 
formulas has been clarified by our treatment, which, in fact, presents much 
of what previous workers have already stated. 

The major task in the theory of chemical correlations and pl/ase tran- 
sitions appears to us to be in the realm of better approximations than those 
presently used to truncate systems of equations involving arbitrarily high 
moments. We believe our simple soluble model is valuable in this respect, 
since approximation schemes can be tested on it. But it is clear that, at the 
critical point, the approximation we made is unlikely to be true, since it is 
very similar to a Gaussian approximation, which is known to fail at such 
points, simply because the standard deviation becomes infinite there. At 
present, methods for tackling this problem do not appear to be available, 
though an approach based on the renormalization group could welt be 
fruitful. 
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A further task is the extension of the methods to those reactions that  

display first-order critical phenomena  and to oscillatory two- or many-  
variable systems. ~22~ Haken/2a~ Mashiyama et al., (~4~ and Lemarchand  and  

Nicolis (2a~ have made significant progress on the latter topic, but  a full 

unders tanding  of the former is a problem yet to be solved. 
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